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Abstract – Tikhonov’s regularization approach has been applied in several inverse problems converting an ill-
posed problem into a well-posed one. This work proposes the use of Bregman distances based on the q-
discrepancy functional as regularization terms. Here the inverse problem is formulated implicitly as an 
optimization problem in which we seek to minimize the cost functional of squared residues between calculated 
and measured quantities. Such approach is then applied for the estimation of the single scattering albedo, optical 
thickness and inner boundary diffuse reflectivities in a one-dimensional participating medium.     
 

1. INTRODUCTION 
The solution of inverse radiative transfer problems has several relevant applications, not only in engineering 
[1,14,20,33], but also in many other areas such as astrophysics [16,25], physical oceanography (optical 
hydrology) [15,17,28,32], remote sensing [9,22], and atmosphere / hydrosphere optics [11,31]. 

When formulated implicitly inverse radiative problems usually require the minimization of a cost functional 
related to the squared residues between an observable quantity and the calculated value for such quantity. 

As inverse problems are usually ill-posed they are affected by the noise which is always present in the 
experimental data. An effective strategy to solve such problems is to replace the original inverse problem of 
interest by another one that is close to the former but is less affected by the experimental data noise. Such 
approach was developed by Tikhonov [29]. In Tikhonov’s approach a regularized functional is developed, in 
which an extra term, that may include some prior information related to the unknowns to be estimated, is added 
to the original objective function to be minimized. Several works are related to the use, analysis and proposition 
of Tikhonov’s regularization terms [5,18,23,24]. 

In the present work we build a family of regularizing terms using Bregman distances constructed using 
moments of a q-discrepancy functional [2,21]. They are very simple to implement computationally and seem to 
yield a robust algorithm which provides reasonable estimates even when noisy data is used. Such approach is 
applied to the solution of inverse radiative transfer problems. In these problems we are interested in the 
estimation of the single scattering albedo, optical thickness and inner boundary diffuse reflectivities in a one-
dimensional participating medium. Only experimental data acquired by external detectors is considered. As 
experimental data we use synthetic values of the intensity of the exit radiation as a function of the polar angle. 
 
2.  DIRECT AND INVERSE RADIATIVE TRANSFER PROBLEM 

2.1 Mathematical formulation of the direct and inverse problems 
The phenomena associated with the interaction of radiation with a participating medium, as schematically 
represented in Figure 1, i.e., an absorbing emitting and scattering media, are usually mathematically modeled 
using the dimensionless linear version of the Boltzmann equation, also referred to as transport equation, which is 
written as [19] 
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where I  is the dimensionless radiation intensity, τ  is the optical variable, 0τ  is the optical thickness of the 
medium, µ  is the direction cosine of the radiation beam with the positive τ  axis, that is, the cosine of the polar 
angle ( θµ  cos= ), ω  is the single scattering albedo, 1ρ  and 2ρ  are the diffuse reflectivities at the inner side of 
the boundary surfaces at 0=τ  and 0ττ = ,  represents an internal radiation source, and  and  are the 
intensities of the incident radiation at 
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Figure 1. Schematical representation of a one-dimensional homogeneous participating medium, with inner 

diffusely reflecting boundary surfaces, subjected to isotropic external radiation. 
 

When the boundary conditions and the material properties are known, the direct problem (1)-(3) can be 
solved providing the values of the radiation intensity for every point in the spatial and angular domains. This is 
the so called direct problem. Here we use Chandrasekhar’s discrete ordinates method [6] to solve the direct 
radiative transfer problem. 

In the inverse problem considered in the present work the optical thickness 0τ , the single scattering albedo 
ω  and the diffuse reflectivities 1ρ  and 2ρ  are the unknowns to be determined [27]. 

As these properties cannot be measured directly, experimental data on the intensity of the exit radiation at 
0=τ  and 0ττ =  is measured at different polar angles, and using this information we try to solve the inverse 

problem. 
Therefore, by using the measured data , iY dNi ,...,2,1= , where  is the total number of experimental data 

available, we want to determine the elements of the vector of unknowns 
dN

P
r

 defined as 
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where the superscript  indicates transpose. T
As the number of experimental data is usually larger than the number of unknowns, we formulate the 

inverse problem implicitly as a finite dimensional optimization problem, in which we seek to minimize the 
Tikhonov’s regularization functional  
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where 
icalcI  represents the calculated values for the exit radiation intensity obtained using an estimate for the 

vector of unknowns P
r

, α  is the regularization parameter,  is the regularization term, and R RP
r

 is a vector with 
reference values (prior information) for the unknowns.  
 
2.2 General regularization term for the Tikhonov functional 
In the present work we use a family of regularization terms  for Tikhonov’s functional shown in eqn.(5). 
These regularization terms are Bregman distances [3] constructed with the moments of the q-discrepancy [2,21], 
and the q-discrepancy is a particular case of Csiszár’s measure [7]. 

R

 
Bregman distances 
In this section we provide a brief description of Bregman distances. Most of the material presented here is 
collected from the references [4,8,12]. 

Let  be a differentiable and strictly convex function defined on a closed, convex set ℜ→ℜ⊆∆ n:η ∆ . 
The Bregman distance associated with (.)η  is defined for , Rp p ∈∆  to be 
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where the function (.)η  is called the Bregman function. It can be shown that, in general, every Bregman distance 
is nonnegative 

0),( ≥RppBη                                                                           (7) 
and is equal to zero if its two arguments are equal, 

                                                                   (8) RR ppppB =⇔= 0),(η

The conditions (7) and (8) are absolutely essential, and convexity is highly desirable for mathematical 
convenience. Bregman distances [3] can be interpreted as a measure of convexity of (.)η . A graphical 
representation of (.)η  as well as the measure of convexity of (.)η  is shown in Figure 2. In the one-dimensional 
case, the Bregman distance is easy to visualize: drawing a tangent line to the graph of η  at the point , the 
Bregman distance  is seen as the vertical distance between this line and the point 

Rp
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Figure 2. A graphical representation of Bregman distances (redraw from [4] ). 
 
 

Due to the convexity of Bregman distances, they may be very convenient to construct the regularization 
terms for Tikhonov’s functional.  
 
Moments of the q-discrepancy 
In the present work the Bregman distances ( )R

qm PPD
rr

,,  were built starting from the Csiszár’s measure [10], 
which we call q-discrepancy. The moment of mth-other of the q-discrepancy is defined as  
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where  is the total number of unknowns in the inverse problem we want to solve. Here , as shown in 
eqn.(4). This functional represents the deviation of an expected value of each property of the medium  raised 
to the power . The parameter q  is a real positive number. 
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The functional (9) for the particular case when  corresponds, therefore, to the entropy functional  0→q
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Equation (10) is similar to the Boltzmann-Gibbs-Shannon formulation for entropy with the value of  
in our formulation, or similar to the expression proposed by Tsallis [30] when the limit  is taken in his 
formulation [10,26]. 
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Regularization terms and Tikhonov functional 
Introducing eqn.(9) into eqn.(6), results in 
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which for the particular case yields  0→q
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Using the Bregman distances as the regularization terms in Tikhonov’s functional, we get from eqns (5) and 
(11), 
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where the elements of the vector of residues F
r

 are given by  
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3.  SOLUTION OF THE INVERSE PROBLEM 
We are looking for the vector P

r
, which minimizes the Tikhonov functional given by eqn.(13). For that purpose 

we first write the critical point equation 
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 The system of nonlinear eqns (15) is written in compact form as  
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where the elements of the Jacobian matrix  are given by  J
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The elements of the Jacobian matrix , eqn.(17), were calculated numerically using a central difference 
approximation.  

J

Writing the Taylor’s expansions  
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where  will be the iteration index for the iterative procedure that will be constructed for the estimation of the 
vector of unknowns 
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and introducing eqns (19) and (20) into eqn.(16) results in 
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Starting with an initial guess 0P
r

, new estimates for the unknowns are obtained from eqn.(21) with the 
corrections nP

r
∆  being obtained from the solution of the system of linear algebraic eqns (24). 

The iterative procedure is interrupted when a stopping criterion is satisfied, such as  
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where ε  is a tolerance, say . 510−
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Table 1: First and second derivatives of the Bregman distances based on the moments of the q-discrepancy for 
 and . 0>q 0→q
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4. RESULTS AND DISCUSSION 
As real experimental data was not available we generated synthetic experimental data by adding noise to the 
calculated values of the radiation intensity, 

( ) diexactcalci NiePIY
i

,,2,1          , K
r

=+= σ                                                     (26) 
where σ  is the standard deviation of the experimental errors and  represent random numbers in range [−1,1]. ie
 In this work we have considered a Gauss-Legendre quadrature to replace the integral term in eqn.(1), with 

 collocation points. The synthetic experimental data was generated for the same grid points considered 
for the angular domain discretization, and therefore 

20=N
20== NNd , being half of the experimental data acquired 

at 0=τ  and half at 0ττ = . 
In order to demonstrate the efficacy of the use of the Bregman distances as the regularization terms in 

Tikhonov’s functional, we have chosen two sets of exact values and initial guesses for which the algorithm 
without regularization did not converge. The exact values and the initial estimates for the radiative properties are 
shown in Table 2. 

 
Table 2: Exact values and initial estimates for the test cases. 

Case 
Exact parameters 

{ }0 1 2, , , T

exactP τ ω ρ ρ=
r

 

Initial guess 

{ }0
2

0
1

00
0

0 ,,, ρρωτ=P
r

 

1 {1.0, 0.5, 0.1, 0.95} {5.0, 0.95, 0.95, 0.1} 

2 {0.3, 0.5, 0.1, 0.95} {1.5, 0.95, 0.95, 0.1} 
 
 
In Tables 3a-c are presented the estimated values for Test Case 1 at some specific iterations using, 

respectively, 0.0σ = , 0.025σ =  and 0.05σ = , corresponding to errors in the experimental data up to 0 %, 14% 
and 35 %. These estimates were obtained with q = 1.5, m = 1.0, and the regularization parameter 0.01α = .  

In Tables 4a-c are presented the estimated values for Test Case 2 at some specific iterations using, 
respectively, 0.0σ = , 0.025σ =  and 0.05σ = , corresponding to errors in the experimental data up to 0 %, 9 % 
and 16 %. The estimates were obtained with regularization using the parameters q = 1.5, m = 1.0, and the 
regularization parameter 0.01α = .  

From Tables 3 and 4 we observe that the algorithm converged even when poor initial guesses are used. We 
observe also that for the runs with noisy data poor estimates may be obtained for parameter 1ρ . This is expected 
since for all cases run in this paper we have considered a difficult situation in which  and  in 
eqns (2) and (3). A sensitivity analysis has shown the lowest sensitivity of the experimental data (intensity of the 
exit radiation) with respect to the parameter 

1 1.0f = 2 0.0f =

1ρ . 
We have then varied the value of the parameters q and m in the ranges 0.0 < q ≤ 2.5 and 0 ≤ m ≤ 3. In Tables 

5a-c and 6a-c we show for Test Cases 1 and 2, respectively, the pairs (q, m) for which convergence was 
achieved, indicated by C, and those for which convergence was not achieved, indicated by NC. For these runs 
we have kept the same value for the regularization parameter 0.01α = . 
 From Tables 5 and 6 we observe that convergence is not achieved for some values of the parameters (q, m). 
There is a trend of non-convergence when higher values are used for both parameters q and m. We have 
performed an analysis of the Bregman distances, given by eqn.(11), constructed with the moments of the q-
discrepancy, given by eqn.(9), and it seems that convexity is not achieved for such high values of the q and m 
parameters. This subject must be further investigated. 
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Table 3: Estimated values for the unknowns at some specific iterations with regularization, q = 1.5, m = 1.0, 

0.01α = . Test Case 1. == R
exact PP

rr
{1.0, 0.5, 0.1, 0.95}. 

(3a) 0.0σ =  (noiseless data) 

Iteration 0τ  ω  1ρ  2ρ  
Objective Function 

(eqn.(5)) 
0 5.0 0.95 0.95 0.1 0.22677 
1 1.9574 8.6165e-01 7.8050e-01 7.4832e-01 6.0228e-01 
2 1.0866 7.7755e-01 6.1642e-01 9.9325e-01 1.0725e-01 
3 9.2517e-01 5.4272e-01 2.5327e-01 9.6960e-01 9.6624e-03 
4 9.9953e-01 5.0508e-01 1.2281e-01 9.5286e-01 7.1872e-04 
5 9.9990e-01 5.0017e-01 1.0088e-01 9.5005e-01 1.3081e-05 
M  M  M  M  M  M  

10 1.0000 5.0000e-01 9.9999e-02 9.4999e-01 -1.0121e-19 
M  M  M  M  M  M  

15 1.0000 5.0000e-01 9.9999e-02 9.4999e-01 -7.0022e-19 
M  M  M  M  M  M  

18 1.0000 5.0000e-01 9.9999e-02 9.4999e-01 2.2138e-19 
M  M  M  M  M  M  

 
(3b) σ = 0.025 (up to 14 % error in experimental data) 

Iteration 0τ  ω  1ρ  2ρ  
Objective Function 

(eqn.(5)) 
0 5.0 0.95 0.95 0.1 0.22677 
1 1.9580 8.6589e-01 7.7792e-01 8.3664e-01 6.0794e-01 
2 1.0905 8.1383e-01 6.6645e-01 1.0042 6.6621e-02 
3 9.0516e-01 5.8671e-01 3.1475e-01 9.6875e-01 1.6765e-02 
4 9.6898e-01 5.2624e-01 1.7396e-01 9.4764e-01 5.7274e-03 
5 9.7147e-01 5.2266e-01 1.5504e-01 9.4429e-01 3.8207e-03 
M  M  M  M  M  M  

10 9.7141e-01 5.3373e-01 1.5502e-01 9.4431e-01 3.8063e-03 
M  M  M  M  M  M  

15 9.7141e-01 5.3373e-01 1.5502e-01 9.4431e-01 3.8063e-03 
M  M  M  M  M  M  

18 9.7141e-01 5.3373 e-01 1.5502e-01 9.4431e-01 3.8063e-03 
M  M  M  M  M  M  

 
(3c) σ = 0.05 (up to 35 % error in experimental data) 

 

Iteration 0τ  ω  1ρ  2ρ  
Objective Function 

(eqn.(5)) 
0 5.0 0.95 0.95 0.1 0.22677 
1 1.9643 8.7257e-01 7.9183e-01 1.0503 5.9399e-01 
2 1.0625 8.0581e-01 6.8539e-01 9.5979e-01 4.3788e-02 
3 8.3460e-01 5.7396e-01 3.6579e-01 9.3023e-01 2.0714e-02 
4 9.1976e-01 4.8215e-01 1.6158e-01 9.2986e-01 1.4420e-02 
5 9.2557e-01 4.6374e-01 8.6082e-02 9.3550e-01 1.2279e-02 
M  M  M  M  M  M  

10 9.3100e-01 4.5439e-01 4.9884e-02 9.3543e-01 1.2036e-02 
M  M  M  M  M  M  

15 9.3100e-01 4.5439e-01 4.9884e-02 9.3543e-01 1.2036e-02 
M  M  M  M  M  M  

18 9.3100e-01 4.5439e-01 4.9884e-02 9.3543e-01 1.2036e-02 
M  M  M  M  M  M  
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Table 4: Estimated values for the unknowns at some specific iterations with regularization, q = 1.5, m = 1.0, 

0.01α = . Test Case 2. == R
exact PP

rr
{0.3, 0.5, 0.1, 0.95}. 

(4a) 0.0σ =  (noiseless data) 

 

Iteration 0τ  ω  1ρ  2ρ  
Objective Function 

(eqn.(5)) 
0 1.5 0.95 0.95 0.1 6.12294 
1 7.6193e-01 8.3812e-01 4.2532e-01 4.2333e-01 3.3177 
2 -9.3717e-02 6.2962e-01 6.4653e-02 1.2013 9.9722e-01 
3 1.4720e-01 5.0703e-01 -4.5323e-01 8.8438e-01 1.1987e-01 
4 2.6073e-01 5.8709e-01 5.2585e-01 9.8524e-01 1.2016e-01 
5 3.0671e-01 4.9577e-01 1.9590 9.6072e-01 1.4125e-02 
M  M  M  M  M  M  

10 2.9999e-01 5.0000e-01 9.9999e-02 9.4999e-01 6.1291e-18 
M  M  M  M  M  M  

15 2.9999e-01 5.0000e-01 9.9999e-02 9.4999e-01 4.4608e-18 
M  M  M  M  M  M  

18 2.9999e-01 5.0000e-01 9.9999e-02 9.4999e-01 3.5614e-18 
M  M  M  M  M  M  

(4b) σ = 0.025 (up to 9 % error in experimental data) 

 

Iteration 0τ  ω  1ρ  2ρ  
Objective Function 

(eqn.(5)) 
0 1.5 0.95 0.95 0.1 6.12294 
1 7.8553e-01 8.4381e-01 4.1771e-01 4.0183e-01 3.2368 
2 9.0102e-02 6.7891e-01 5.7351e-02 1.1495 9.7026e-01 
3 3.4418e-01 9.1890e-01 8.3298e-01 9.4345e-01 6.3238e-01 
4 -1.5991e-01 5.9698e-01 4.1595e-01 8.5763e-01 1.0995e-01 
5 1.3588e-01 5.0577e-01 3.8936e-01 8.2903e-01 5.1127e-01 
M  M  M  M  M  M  

10 2.8710e-01 5.5444e-01 2.0660e-01 9.3643e-01 5.2828e-03 
M  M  M  M  M  M  

15 2.8713e-01 5.5444e-01 2.0651e-01 9.3642e-01 5.2828e-03 
M  M  M  M  M  M  

18 2.8713e-01 5.5444e-01 2.0651e-01 9.3642e-01 5.2828e-03 
M  M  M  M  M  M  

(4c) σ = 0.05 (up to 16 % error in experimental data) 

Iteration 0τ  ω  1ρ  2ρ  
Objective Function 

(eqn.(5)) 
0 1.5 0.95 0.95 0.1 6.12294 
1 8.0789e-01 8.4726e-01 4.1038e-01 4.7814e-01 3.3876 
2 1.0567e-01 7.2322e-01 2.1043e-01 1.2041 8.4015e-01 
3 3.5646e-01 8.1281e-01 4.6527e-01 9.6099e-01 5.4613e-01 
4 1.9296e-01 6.0576e-01 2.7711e-01 9.5253e-01 6.2781e-02 
5 2.5811e-01 5.8661e-01 3.5315e-01 9.5869e-01 7.2982e-02 
M  M  M  M  M  M  

10 2.5479e-01 5.7496e-01 3.4531e-01 9.5889e-01 2.0335e-02 
M  M  M  M  M  M  

15 2.5479e-01 5.7496e-01 3.4531e-01 9.5889e-01 2.0335e-02 
M  M  M  M  M  M  

18 2.5479e-01 5.7496e-01 3.4531e-01 9.5889e-01 2.0335e-02 
M  M  M  M  M  M  

20 2.5479e-01 5.7496e-01 3.4531e-01 9.5889e-01 2.0335e-02 
M  M  M  M  M  M  
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Table 5: Regions (q, m) of convergence (C) and non-convergence (NC) for the algorithm with regularization. 

0.01α = . Test Case 1. R
exact PP

rr
= . 

(5a) 0.0σ =  
                    q  
m 

0.0 0.5 1.0 1.5 2.0 2.5 

0.0 NC  NC C C C C 
1.0 C C C C C C 
2.0 NC NC NC NC NC NC 
3.0 NC NC NC NC NC NC 

 
(5b) σ = 0.025 

                    q  
m 

0.0 0.5 1.0 1.5 2.0 2.5 

0.0 NC NC NC C C NC 
1.0 C C C C C C 
2.0 NC NC NC NC NC NC 
3.0 NC NC NC NC NC NC 

 
(5c) σ = 0.05 

                    q  
m 

0.0 0.5 1.0 1.5 2.0 2.5 

0.0 NC NC NC C C NC 
1.0 C C C C C C 
2.0 NC NC NC NC NC NC 
3.0 NC NC NC NC NC NC 

 

 

Table 6: Regions (q, m) of convergence (C) and non-convergence (NC) for the algorithm with regularization. 
0.01α = . Test Case 2. R

exact PP
rr

= . 

(6a) 0.0σ =  
                    q  
m 

0.0 0.5 1.0 1.5 2.0 2.5 

0.0 NC NC C C C C 
1.0 C C C C C C 
2.0 C C NC NC NC NC 
3.0 NC NC NC C C C 

 
(6b) σ = 0.025 

                    q  
m 

0.0 0.5 1.0 1.5 2.0 2.5 

0.0 NC NC NC C C NC 
1.0 C NC NC C NC NC 
2.0 NC NC NC NC NC NC 
3.0 NC NC NC NC NC NC 

 
(6c) σ = 0.05 

                    q  
m 

0.0 0.5 1.0 1.5 2.0 2.5 

0.0 NC NC NC C C NC 
1.0 C NC NC C NC NC 
2.0 NC NC NC NC NC NC 
3.0 NC NC NC NC NC NC 

 
 
 

P03
8



 
5. CONCLUSIONS 
In the present work we presented the  efficacy of using  Bregman distances  constructed  with  the  moments of 
q-discrepancy as regularization terms in Tikhonov’s functional for the solution of inverse radiative transfer 
problems. We found that in some ranges of the control parameters convexity is not observed. This subject will be 
further investigated in future works, and weighting factors will be implemented as an attempt to keep the 
convexity of the regularization terms. 
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